Stress generally hurts many aspects of memory, but an interesting finding to emerge from the stress and memory literature is that stress that occurs shortly after learning (i.e., post-encoding stress) usually benefits memory. Although this effect is well established, the biological mechanisms underpinning this effect are not—especially in humans. We addressed this gap in the present study by collecting saliva samples from 80 participants who were randomized to a post-encoding stress (i.e., cold pressor for 3 min) or control task (i.e., warm water for 3 min) and 48 h later completed a recognition memory task. Saliva was collected both prior to and 15 min after the offset of (18 min after the onset of) the stress/control manipulation. Drawing on animal and human work, we examined how five stress-responsive biomarkers—cortisol, salivary α-amylase, progesterone, estradiol, and the proinflammatory cytokine interleukin (IL)-1β, all assessed in saliva—related to the effects of stress on memory. We found that stress enhanced recollection of negative images and that these effects were selectively related to salivary IL-1β. Moreover, we found that the beneficial effects of stress on memory were statistically mediated by salivary IL-1β. We found no robust associations—either linear or quadratic—between memory and any other biomarker, nor did we find significant interactions between biomarkers in predicting memory. These results suggest that immune system activity indexed by salivary IL-1β may play an important role in contributing to post-encoding stress effects on human memory.